
www.manaraa.com

Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2009-05-15

EASEmail: Easy Accessible Secure Email EASEmail: Easy Accessible Secure Email

Ryan B. Segeberg
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

 Part of the Computer Sciences Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Segeberg, Ryan B., "EASEmail: Easy Accessible Secure Email" (2009). Theses and Dissertations. 2135.
https://scholarsarchive.byu.edu/etd/2135

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F2135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2135?utm_source=scholarsarchive.byu.edu%2Fetd%2F2135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

EASEMAIL: EASY ACCESSIBLE SECURE EMAIL

by

Ryan B. Segeberg

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Brigham Young University

August 2009

www.manaraa.com

Copyright c© 2009 Ryan B. Segeberg

All Rights Reserved

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Ryan B. Segeberg

This thesis has been read by each member of the following graduate committee and
by majority vote has been found to be satisfactory.

Date Kent E. Seamons, Chair

Date Quinn Snell

Date Dan Olsen

www.manaraa.com

BRIGHAM YOUNG UNIVERSITY

As chair of the candidate’s graduate committee, I have read the thesis of Ryan B.
Segeberg in its final form and have found that (1) its format, citations, and bibli-
ographical style are consistent and acceptable and fulfill university and department
style requirements; (2) its illustrative materials including figures, tables, and charts
are in place; and (3) the final manuscript is satisfactory to the graduate committee
and is ready for submission to the university library.

Date Kent E. Seamons
Chair, Graduate Committee

Accepted for the Department

Date Kent E. Seamons
Graduate Coordinator

Accepted for the College

Date Thomas W. Sederberg
Associate Dean, College of Physical and Mathematical
Sciences

www.manaraa.com

ABSTRACT

EASEMAIL: EASY ACCESSIBLE SECURE EMAIL

Ryan B. Segeberg

Department of Computer Science

Master of Science

Traditional email encryption methods are difficult to set up, as they require

senders to obtain a message recipient’s public key before a secure communication can

be sent. Easy Accessible Secure Email (EASEmail) addresses the key establishment

and exchange issues of encrypted email by using a lightweight symmetric key server.

Users can send a secure email without establishing or exchanging keys with the recip-

ient in advance. With usability as its primary goal, EASEmail strives to bring usable

secure email communication to the masses.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank Tim van der Horst for the vital role he played. His prior

work on Blind Escrowed Email (Beemail) and 3SKE (both unpublished) were the

seeds that germinated into EASEmail. His experience and knowledge were a great

resource, many a wrong path was avoided because of his good advice. He was a well

of ideas and a sounding board for design decisions during the development process.

Were it not for him, EASEmail may not have ever existed.

I would also like to thank Dr. Seamons for his efforts in bringing EASEmail to

fruition. The many drafts he read and the advice he gave was invaluable in finishing

and refining this paper.

Truely I stand on the shoulders of giants, as the work I was able to accomplish

here would not have been possible if not for what so many before me have contributed.

Finally, I’d like to thank my wife and children who have been patient and

supportive during the countless hours I have spent on this work.

This research was supported by funding from the National Science Foundation

under grant no. CCR-0325951, prime cooperative agreement no. IIS-0331707, and

The Regents of the University of California.

www.manaraa.com

Contents

Contents vii

1 Introduction 3

1.1 Motivating Scenarios . 4

2 Related Work 7

2.1 Pretty Good Privacy . 7

2.2 Secure/Multipurpose Internet Mail Extensions 8

2.3 Identity Based Encryption . 8

2.4 Lightweight Encryption for Email . 9

2.5 Identity Based Message Key Distribution 10

2.6 Opportunistic Encryption . 11

2.7 Web-based Providers . 12

2.7.1 Hushmail . 12

2.7.2 freenigma . 12

3 EASEmail 15

3.1 Design Goals . 15

3.1.1 Usability . 15

3.1.2 Mobility . 16

3.1.3 Security . 16

3.2 EASEmail Overview . 16

3.2.1 Encryption . 16

vii

www.manaraa.com

3.2.2 Decryption . 17

3.3 Key Establishment and Exchange . 17

3.3.1 Source-Specific Symmetric Key Exchange 19

3.3.2 Simple Authentication for the Web 20

3.3.3 Combining 3SKE and SAW for use with EASEmail 21

3.4 Sending an EASEmail Message . 22

3.4.1 Message Encryption . 23

3.4.2 Message Authentication . 24

3.4.3 Subject Line Encryption . 25

3.5 Spam . 25

4 Implementation 27

4.1 KDC . 28

4.2 Java Library . 29

4.3 Firefox Extension for Gmail . 30

4.3.1 Challenges . 30

4.4 Thunderbird Extension . 33

4.5 Java Applet . 34

5 Threat Analysis 39

5.1 Threat Model . 39

5.1.1 Attacks . 39

5.1.2 Attackers . 39

5.2 Threats . 40

5.2.1 Eavesdropping . 40

5.2.2 Denial of Service . 40

5.2.3 Message modification . 40

5.2.4 Replay . 41

viii

www.manaraa.com

5.2.5 Impersonation to other users 41

5.2.6 Impersonation to the KDC . 42

5.2.7 Surreptitious Forwarding . 42

5.2.8 Compromised Keys . 43

6 User Study 45

6.1 Results . 45

6.1.1 Multiple Choice Results . 46

6.1.2 Short Answer Results . 46

6.1.3 Solutions . 47

7 Conclusions and Future Work 49

Bibliography 51

A EASEmail Message Details 53

A.1 Encryption . 53

A.2 Decryption . 54

B User Study Details 57

B.1 Introduction email . 57

B.2 Survey . 58

B.3 Responses . 59

1

www.manaraa.com

2

www.manaraa.com

Chapter 1

Introduction

Email communication is ubiquitous. It is used every day for the bulk of mun-

dane exchanges as well as for mission critical business applications. Email traffic on

the Internet is typically transmitted in the clear, and, as such, personal information

sent via email does not carry the same assurance as regular postal mail does. Regular

post is usually sent in an envelope, which obscures the contents of the message and

provides some level of tamper resistance. Email is more akin to post cards, whose

contents can be read by any passive observer.

A number of email encryption standards have been introduced over the years.

Two popular standards are Pretty Good Privacy (PGP) and Secure/Multipurpose

Internet Mail Extensions (S/MIME). These asymmetric encryption solutions suffer

from usability problems. Senders must first obtain the recipient’s public key before

secure email can be sent. This basic bootstrapping problem removes the send-and-

forget nature of email where any sender can send to any recipient without previous

communication. In a survey conducted by Garfinkel et al. [7], the majority of re-

spondents either did not know how to send secure email, or did not even know what

secure email was. As a result confidential information is often sent in the clear out of

lack of choice, or not sent at all.

A relatively new technology called Identity-based Encryption (IBE) addresses

these problems. With IBE a recipient’s public key is simply their identifier (e.g.,

email address) combined with some publicly known values that belong to a key server.

3

www.manaraa.com

This eliminates the bootstrapping process and allows users to send email without any

previous communication. Recipients who do not yet have their private key can simply

contact the key server to obtain it after the message is received.

The underlying reason why most existing encrypted email solutions are difficult

to use is due to the complexity of the underlying technology. We introduce Easy

Accessible Secure Email (EASEmail), which is designed from the ground up with

usability as its primary goal. EASEmail relies on a simple, lightweight key server

that facilitates key establishment and exchange between authenticated users without

user-specific management or pre-established shared secrets. EASEmail is similar in

concept to IBE, but leverages symmetric key cryptography.

1.1 Motivating Scenarios

We present three motivating scenarios for EASEmail:

No established secrets Tim really needs a job. A job posting informs him to fill

out an application which he should then email, along with his resume, to HR manager

Bob. Tim knows that he should protect his personal information, and does not like

the idea of sending an application and his resume in a plaintext email. Since Tim

does not know Bob, he has no idea if Bob has already established a public/private

key pair for either of the two well established email encryption methods (PGP or

S/MIME), and even if Bob does have a key pair Tim does not have Bob’s public key.

The only information Tim has about Bob is Bob’s email address. Tim needs a way

to send a secure message without having to first contact Bob.

Key Escrow Alice owns a small restaurant chain and needs to send confidential

business information to the managers. Neither she nor the managers are very tech

savvy. She has tried using PGP, but a laptop crash caused her to lose her private

key, leaving her unable to decrypt her messages. Alice needs a simple, lightweight

email encryption mechanism that includes key escrow so she can send the occasional

4

www.manaraa.com

encrypted message to her store managers without the burden of personally managing

and backing up keys.

Portability Charlie uses web-based email exclusively. He is security minded and

would like to send and receive secure email even on the go. He wants an encrypted

email solution that will work with his existing web-mail provider’s interface, but will

still keep his messages confidential, even from his email provider. He could use PGP

or S/MIME, but he does not want to carry a private key, and none of his contacts

presently use encrypted email. He frequently uses public computers which forbid the

installation of software so he needs a solution that does not require client modification

to work.

5

www.manaraa.com

6

www.manaraa.com

Chapter 2

Related Work

2.1 Pretty Good Privacy

Pretty Good Privacy (PGP) [18] was developed by Phillip Zimmermann in 1991 and

uses asymmetric encryption. Users generate their own public/private key pairs and

upload their public key to a key server. These keys can be signed by other users

to create a “web of trust.” Once created, the keys can be used to sign and encrypt

messages. Before an encrypted message can be sent the sender must obtain the

recipient’s public key. This is best done by the sender and recipient exchanging keys

out-of-band where each entity verifies the other’s identity and public key fingerprint

(e.g., a key signing party), after which encrypted messages can be sent. Public keys

can also be obtained directly from a key server. This, however, offers no assurance

that a key belongs to the intended recipient since anyone can create a key using any

identifier.

PGP has several limitations. The loss of a user’s private key renders them un-

able to decrypt any messages (new and old). Compromise of the private key means an

attacker can trivially decrypt messages encrypted with the corresponding public key.

This necessitates key revocation lists to prevent senders from encrypting messages

with compromised keys.

Most major email clients including Microsoft Outlook, IBM Lotus Notes, and

Mozilla Thunderbird do not support PGP but instead require an add-on or plug-in.

7

www.manaraa.com

2.2 Secure/Multipurpose Internet Mail Extensions

Secure/Multipurpose Internet Mail Extensions (S/MIME) [20] was originally devel-

oped by RSA Data Security, Inc. Like PGP it uses asymmetric encryption. Instead of

a web of trust, users obtain a certificate for their public key from a trusted Certificate

Authority (CA). Ideally the CA verifies the user’s identity before certifying a key.

This certificate is signed by the CA, creating a trust hierarchy that enables it to be

trusted by others.

Because S/MIME also uses asymmetric encryption, it has many of the same

weaknesses as PGP. Users still need to exchange public keys before encrypted mes-

sages can be sent, requiring senders to contact recipients who do not yet have a public

key. Obtaining a certificate for a public key requires divulging personal information

(for identification purposes) which some users are unwilling to do. Loss or compro-

mise of the private key has the same implications as with PGP and necessitates the

CA maintaining a key revocation list.

Almost all major email clients support S/MIME natively including Microsoft

Outlook, IBM’s Lotus Notes, and Mozilla Thunderbird.

2.3 Identity Based Encryption

The concept of Identity Based Encryption (IBE) was first introduced by Adi Shamir

[19] in 1984. Later Boneh and Franklin presented a full IBE scheme using the Weil

Pairing on elliptic curves [2].

IBE is asymmetric encryption based, but instead of using randomly generated

public/private key pairs, it uses a user’s identifier as the public key. A key server called

a Private Key Generator (PKG), with its own public/private key pair, generates the

corresponding private keys for identifiers. One obvious problem with this scheme is

cases where a user’s private key is compromised. It is one thing to revoke a randomly

generated public key; it is much more difficult to revoke one’s identity. To solve this

8

www.manaraa.com

problem short lived keys are used. A complete identity-based public key is based on

the user’s identifier, public values of the key server, and a time period (such as the

current day). Thus the user has a unique public/private key pair for each time period.

Key loss is not an issue since the PKG manages keys. However, since the

PKG has the ability to generate any private key, it also has the ability to decrypt

any message encrypted with the associated IBE public key. This is in contrast to

PGP and S/MIME where only the owner of the private key can decrypt messages

encrypted with the associated public key (presuming their private key has not been

compromised).

Key compromise is still a problem. This problem is mitigated by the short life

time of the key, a compromised key only allows for decryption of a small subset of

the messages a user has received. These short lived keys eliminate the need for a key

revocation system.

IBE overcomes many of the problems of PGP and S/MIME. Users no longer

need to exchange public keys before they can send encrypted messages. Also, a user

with a public/private key pair can send messages to a user who does not. If the

recipient wants to put forth the required effort they can obtain their private key from

the PKG and decrypt the message.

Voltage Security offers a variety of solutions that leverage IBE.

2.4 Lightweight Encryption for Email

Adida et al. [1] present a scheme to improve on a few of the short comings in IBE. To

prevent the PKG from being able to decrypt user’s messages, they propose a two key

system. Users generate their own uncertified public/private key pair. They publish

their public key on a website or key server. The PKG publishes its public key as a

DNS entry. To compute a recipient’s public key a sender simply combines the two

keys. To decrypt messages a recipient needs both their self generated private key and

9

www.manaraa.com

the private key associated with their identifier. This way the PKG does not have the

ability to decrypt messages, since it does not know the user’s self generated private

key.

With standard IBE the PKG is a single point of failure. With the private

key of the PKG an attacker can generate the private key for any user. The paper

proposes that the private key be split and stored on an arbitrary number of servers.

The paper includes algorithms for splitting and combining keys so they never have to

be physically combined before being used. This requires an attacker to compromise

all the PKGs.

The difficultly of publishing one’s public key is a major usability issue with

this solution. This also has the same key loss problem as PGP and S/MIME, loss of

the self generated private key renders messages unreadable.

2.5 Identity Based Message Key Distribution

Khurana and Basney [14] present an alternative to IBE called Identity Based - Mes-

sage Key Distribution (IB-MKD). IB-MKD utilizes a key distribution center (KDC)

that is very similar to the PKG in IBE, except the KDC does not generate any keys;

it simply decrypts keys for recipients.

Messages are encrypted by the sender with a randomly generated key. This

key, along with the identifier of the recipient and optionally some policy information,

is encrypted with the public key of the KDC. This public key is available as a DNS

entry. When a message is received the recipient extracts this encrypted information

and contacts the KDC. After authenticating the recipient (e.g., with a password)

and enforcing the included policy (if any) the KDC decrypts the information with its

private key and returns the encryption key to the recipient.

A key strength of this system is also a weakness: each message is encrypted

with a unique, unrelated, and randomly generated key. This requires a recipient

10

www.manaraa.com

to interact with the KDC each time a message is received. While KDC interactions

should be brief, the need for the KDC to always be available presents a real limitation,

whereas with IBE once a user has obtained her private key she does not need to

interact with the PKG for the rest of the time period. It is not possible to optimize

message decryption since users cannot pre-fetch keys for future time periods.

2.6 Opportunistic Encryption

Garfinkel et al. [6] introduce Stream, a simple opportunistic email encryption scheme.

Stream is a proxy filter that automatically encrypts and decrypts messages for email

users. The proxy generates and manages public/private key pairs for all users. Mes-

sages are sent with the public key in the message header. When a user receives a

new public key in a message the proxy adds the key and the associated email address

to a database. Users are sent warning messages for situations where the public key

in a message and the message sender’s email address do not match the entry in the

database. Messages are encrypted by the proxy for recipients whose public keys are

available, and sent in the clear for all others. Upon receipt, messages are decrypted

by the proxy before being delivered to the recipient.

Stream takes the burden of key management away from the user. It does not

require the installation of client software. Users behave mostly like they do today.

Because the encryption is opportunistic, users may not be aware when their messages

are and are not encrypted. It may be the case that some recipients of a particular

message receive it encrypted, while others receive it in plaintext. This could lead

to users accidentally sending data that is supposed to be secure in the clear. Also,

because the messages are encrypted by the proxy, the proxy has the ability to read

messages.

11

www.manaraa.com

2.7 Web-based Providers

A number of web-based encrypted email services have surfaced over the years. The

following are the most notable ones.

2.7.1 Hushmail

Hushmail [10] is a web service that uses PGP for email encryption. During registration

a public/private key pair is generated and stored on the Hushmail servers. The private

key is encrypted with the user’s passphrase. Users can choose to sign and/or encrypt

their messages, when they do so their private key is retrieved from the Hushmail

servers. Encrypted email can be sent to other users of Hushmail and those who have

uploaded their public keys to the Hushmail key server. Encrypted email can be sent

to non-Hushmail users by supplying a security question and answer that the recipient

is able to answer.

While Hushmail attempts to solve the bootstrapping problem of PGP, it still

suffers from a different kind of bootstrapping problem. Users still cannot send en-

crypted email to a recipient they do not know. Sending email to a non-Hushmail

recipient is possible, but requires establishing a secret between the sender and re-

cipient. In situations where the sender does not know the recipient (as in the first

motivating scenario) this is not feasible. Further, since the mail server and the key

server are the same entity, the email provider has the ability to decrypt messages at

any time.

2.7.2 freenigma

freenigma [5] is a web browser extension that works with Gmail, Yahoo, and Hotmail.

Its goal is to bring usability to encrypted email, abstracting the details away from the

user as much as possible. At sign-up a PGP public/private key pair is generated for

12

www.manaraa.com

the user and stored on the freenigma servers. When the user sends encrypted email

the extension fetches their keys from the server.

freenigma works like a social network, users invite people to be on their buddy

list, and then they can send encrypted email to them. Emails conform to the PGP

standard so non-freenigma users who use PGP should be able to read the mes-

sages. Users compose their messages using the normal web-interface of the web-mail

provider.

While freenigma tries to simplify the bootstrapping process, it is still there.

Recipients have to be added to the sender’s buddy list before secure mail can be sent.

This process requires the recipient to join the freenigma service and establish their

own key pair. Also, since messages are composed using the email provider’s interface,

JavaScript could be used to get the plaintext message before it is encrypted.

13

www.manaraa.com

14

www.manaraa.com

Chapter 3

EASEmail

To overcome the usability problems of traditional email solutions we propose

Easy Accessible Secure Email (EASEmail). EASEmail leverages symmetric encryp-

tion and has several characteristics of IBE: a simplified mechanism for obtaining keys

for recipients based on their identity and reliance upon a trusted third party (i.e., key

escrow).

3.1 Design Goals

The design goals of EASEmail are usability, mobility, and security.

3.1.1 Usability

Usability is the primary goal in the design of EASEmail. Key establishment and

exchange is difficult with some email encryption solutions and is the reason they are

hard to use. When making design decisions we leverage existing user experience by

mimicking activities users are already accustomed to doing. Ideally, very little user

training should be needed before she is able to properly use EASEmail.

One of the major drawbacks of most email encryption solutions is the need

to obtain the recipient’s public key before a secure message can be sent. The goal

for EASEmail is to be able to send an encrypted message to any valid email address

with very little bootstrapping. Recipients can then decide if they want to obtain the

software needed for decryption.

15

www.manaraa.com

3.1.2 Mobility

Encrypted email has the potential of limiting users so they can only send and re-

ceive secure messages at their own computer, either because they must constantly

be in possession of their encryption keys, or they need special software for message

encryption and decryption. Many email providers, including corporations, provide

POP and IMAP as well as web-based email access. Users can typically access their

email account at any time, from any place. A goal for EASEmail is to allow users to

access their secure messages from any computer that has access to the Internet, even

when they do not have the ability to install software on the system.

3.1.3 Security

Regular insecure email has low security, but is successfully used by a wide range

of users each day. When used correctly, solutions such as S/MIME and PGP offer

the highest level of security because users create and control their own keys. This in-

creased level of security suffers from usability problems as has already been discussed.

Our goal with EASEmail is to strike a balance between security and usability.

The system should be as easy to use as regular email, thus users should not be

burdened with key management. Returning to the postcard analogy, the message is

placed into a sealed envelope, protecting it from passive observation and raising the

bar for active attackers.

3.2 EASEmail Overview

This section provides an overview of EASEmail message encryption and decryption.

The details on how and why each step is performed are discussed in the subsequent

sections.

3.2.1 Encryption

1. Get the sender key from the KDC

16

www.manaraa.com

2. For each recipient, derive the sender-recipient key

3. Compute the MAC of the plaintext for each recipient

4. Generate the random message key

5. Encrypt the message key for each recipient with the sender-recipient key

6. Associate the encrypted message key with the hash of the recipient’s identifier

7. Encrypt the message with the message key

8. Compute the MAC of the ciphertext for each recipient

3.2.2 Decryption

1. Get the sender-recipient key from the KDC

2. Verify the ciphertext MAC

3. Look up the encrypted message key associated with the hashed identifier

4. Decrypt the message key with the sender-recipient key

5. Decrypt the ciphertext with the message key to recover the plaintext message

6. Verify the plaintext MAC

Figure 3.1 shows a diagram of an encrypted EASEmail message. A more

detailed outline of the message packaging steps can be found in Appendix A.

3.3 Key Establishment and Exchange

EASEmail has a simple mechanism for user authentication and key distribution to

senders and recipients. For key establishment and exchange we adopt Source-specific

Symmetric Key Exchange (3SKE), and for authentication we leverage Simple Au-

thentication for the Web (SAW) [22].

17

www.manaraa.com

EASEmail Message

Sender: alice@foo.com
Key-Time: 06052008
Nonce: RAND()

Ciphertext-Sig: HMACκc mac
s,r1

(ME)

Ciphertext-Sig: HMACκc mac
s,r2

(ME)
...

Ciphertext-Sig: HMACκc mac
s,ri

(ME)

Encrypted recipient keys:
HMACκid

s,r1
(idr1):Eκenc

s,r1
(κm)

HMACκid
s,r2

(idr2):Eκenc
s,r2

(κm)
...

HMACκid
s,ri

(idri
):Eκenc

s,ri
(κm)

ME=

Encrypted Message

Plaintext-Sig: HMACκp mac
s,r1

(MP)

Plaintext-Sig: HMACκp mac
s,r2

(MP)
...

Plaintext-Sig: HMACκp mac
s,ri

(MP)

MP = Plaintext

Figure 3.1: EASEmail message contents (attachment)

18

www.manaraa.com

KDC Key Distribution Center
KDFx() Key Derivation Function (using key x)
RAND() Random number generator

κkdc KDC master key
κm message encryption key
κs sender’s derivation key

κs,rx sender-recipient specific key
κenc

s,rx
encryption key (derived from κs,rx)

κid
s,rx

identifier key (derived from κs,rx)
κmac

s,rx
MAC key (derived from κs,rx)

κp mac
s,rx plaintext MAC key (derived from κs,rx)

κc mac
s,rx

ciphertext MAC key (derived from κs,rx)
ids sender identifier

idrx recipient identifier
iddgst

rx hashed recipient identifier
ME encrypted message
MP plaintext message

macP plaintext MAC
macC ciphertext MAC

τ time value

Table 3.1: Variable names and definitions

3.3.1 Source-Specific Symmetric Key Exchange

Source-specific Symmetric Key Exchange (3SKE)1 is a lightweight symmetric key

exchange protocol. This protocol includes a Key Distribution Center (KDC) whose

responsibility it is to distribute keys to authenticated users. 3SKE is lightweight

because it is stateless. The KDC only has to store its own private master key. It does

not have to store user-specific keys or transaction information.

The KDC distributes keys to authenticated users based on a master key κkdc.

This key is used in a Key Derivation Function (KDF) [12, 13] (e.g., HMAC [16] can be

used as a KDF) to derive all other keys that the KDC distributes. To help mitigate

compromised keys and avoid the hassles of key revocation, derived keys are short-

lived, ranging from days to weeks to months, depending on the needs of the users of

the KDC.

13SKE is unpublished work by Tim van der Horst.

19

www.manaraa.com

Senders authenticate with the KDC to obtain their sender key κs. Each sender

key is valid within a time period τ , as specified by the KDC. Sender keys are not

used for message encryption, rather they are used to derive encryption keys. Senders

derive sender-recipient keys κs,rx offline using a KDF (see Figure 3.2), thus senders

only have to interact with the KDC once per time period. A recipient obtains κs,rx by

authenticating with the KDC, which derives it using the same process the sender did

(see Figure 3.3). The recipient never receives κs, the KDC derives this, then derives

κs,rx . Once κs,rx has been delivered to the recipient both keys are discarded by the

KDC.

Sender KDC
ids−−−−→ κs= KDFκkdc

(ids‖τ)

κs,rx= KDFκs(idrx) κs, τ←−−−−
Figure 3.2: 3SKE Sender key exchange

Recipient KDC
ids, idrx , τ−−−−→ κs= KDFκkdc

(ids‖τ)

κs,rx←−−−− κs,rx= KDFκs(idrx)

Figure 3.3: 3SKE Recipient key exchange

The 3SKE protocol does not include a mechanism for authentication, it as-

sumes this has already been done. Any system that effectively authenticates users

before keys are distributed will work. We elected to use Simple Authentication for

the Web (SAW) due to its ease of use and natural fit to a secure email system.

3.3.2 Simple Authentication for the Web

Simple Authentication for the Web (SAW) [22] is an email-based authentication mech-

anism that uses a two token process to authenticate users. In traditional SAW (see

Figure 3.4(a)), users submit their identifier to a website. The site then generates a

20

www.manaraa.com

token and splits it into two tokens. One token (AuthTokenuser) is returned to the

user as a browser cookie. The other token (AuthTokenemail) is emailed to the email

address provided. The user then retrieves the email and returns both tokens to the

server. Her ability to do this proves she controls the email address. Software can

automate this entire process, reducing the burden on the user.

One round SAW (see Figure 3.4(b)) is a variation on traditional SAW. It can

be used in situations where a single response from the server, instead of a persistent

connection, is needed. Instead of generating a random authentication token and

throwing it away once the authentication is complete, the complete token is the

server’s response. One half (AuthTokenuser) is returned directly to the user in the

open session. The other half (AuthTokenemail) is emailed to the address provided in

the request. The two halves are combined to obtain the complete server response.

(a) Traditional SAW protocol (b) One round SAW protocol

Figure 3.4: SAW protocols

3.3.3 Combining 3SKE and SAW for use with EASEmail

These two protocols integrate with each other seamlessly. Senders and recipients

contact the KDC to request a key. In their request they specify their email address,

which is their identifier. The KDC computes the correct key and uses one-round

SAW for authentication by returning the first half of the key in the active session and

sending the other half to the email address specified in the request. The user then

checks her email, combines the two halves, and has the key she needs to complete

21

www.manaraa.com

the encryption or decryption of her message. This process is automated by the client

software.

To speed up encryption/decryption and reduce KDC interactions, keys can

be cached locally and requested in bulk. Further, recipients need not wait until a

message is received to request the key. Recipients can pre-fetch keys to streamline

the decryption process once a secure message is received.

3.4 Sending an EASEmail Message

Once the sender key has been obtained the message is packaged for transmission

on the Internet. At a high level, the body of the message and any attachments are

combined into a single MIME multipart message that is authenticated, encrypted, and

then authenticated again to produce a ciphertext message. This ciphertext message,

which is a MIME message that is contained in a single text file, consists of the

encrypted message and the information needed for decryption as shown in Figure

3.1. It is sent as an attachment in a regular email to the recipient(s) specified by the

sender. The KDC does not store or transmit the message. It is sent directly from

the sender to the recipient(s) via their email providers, just as regular email is sent

today.

Users unfamiliar with EASEmail will not know what to do if they were to

receive a seemingly garbled message in their inbox. Thus, plaintext instructions are

included with the message to help the recipient figure out what it is, and how to get

the software to decrypt it.

The body of the message is replaced with instructions that aid the user in de-

crypting the message. These instructions contain a brief explanation to the recipient

informing them that the attached file is an encrypted message. A link to the KDC

is included, allowing the recipient to click the link and obtain the software needed to

decrypt the message.

22

www.manaraa.com

3.4.1 Message Encryption

The Cryptographic Message Syntax (CMS) [9] is used for message encryption. To

improve performance, a message is encrypted only once for all recipients with a ran-

domly generated message specific symmetric key κm. This key is then encrypted for

each recipient with a key derived from the corresponding sender-recipient key κenc
s,rx

and a nonce η. The nonce forces identical messages encrypted with the same key to

appear random.

Since the same encrypted attachment can be sent to multiple recipients, includ-

ing blind carbon copy (BCC) recipients, each recipient needs to identify the correct

encrypted message key. Encrypted message keys are associated with their correspond-

ing identifiers by a key identifier. This approach potentially leaks information about

the recipients of a message. If the plaintext identifiers of the message’s recipients are

used, the identity of BCC recipients will be revealed. Instead, the recipients’ iden-

tifiers are hashed using an HMAC and a key derived from the sender-recipient key

κid
s,rx

and η. A recipient can easily compute their hashed identifier, yet will be unable

to determine the identities of the other recipients of the message.

Even though the key identifiers do not reveal who BCC recipients are, they do

not hide the presence of the BCC recipients altogether. Two simple solutions to hiding

the presence of BCC recipients involve either specifying a set number of message

recipients (where fake recipients are inserted to make up the difference between the

number of actual recipients and the number specified), or including a random number

of fake recipients with each message.

Since adding fake recipients represents additional overhead in terms of message

size, the number of fake recipients needs to be limited. The number of fake recipients

is not mandated by the KDC and depends largely on the email habits of a particular

sender. Individual senders can change this number according to their expected email

usage. Present implementations have a set number of recipients of 20, which could be

23

www.manaraa.com

increased to 50 without affecting message size significantly. Even in situations where

the presence of BCC recipients is leaked, their identities are still private because they

have been hashed.

3.4.2 Message Authentication

Message authentication is accomplished by generating a Message Authentication Code

(MAC) for each recipient of the message and setting it in a header of the message.

A fake MAC has to be added for each fake recipient that is inserted during the

encryption phase to disguise the presence of BCC recipients.

The authentication key κmac
s,rx

is derived from the sender-recipient key and η.

To verify a message, a recipient simply uses her key and the message she received to

generate a MAC, and compares the MAC she generated to the list of MACs in the

message. If her generated MAC matches one of the message MACs, she accept the

message.

The finer points of encrypt-then-authenticate and authenticate-then-encrypt

have been discussed in security literature [4, 15]. For EASEmail we authenticate each

message twice. First a MAC of the plaintext is computed for each recipient and the

resulting MACs are set as headers in the message. Next the plaintext along with the

MACs are encrypted, finally a MAC of the ciphertext is computed for each recipient

and the resulting MACs are set as headers on the ciphertext.

The ciphertext authentication facilitates detection of modifications to the mes-

sage while it was in transit. Invalid or altered messages can easily be detected and

discarded without wasting further resources decrypting them. The plaintext authen-

tication ensures that the correct key was used to decrypt the message and that the

decrypted plaintext matches what was originally encrypted.

24

www.manaraa.com

3.4.3 Subject Line Encryption

Leaving the subject line as plaintext can potentially leak sensitive information about

the content of the message. Some users may assume that any and all text, including

the subject, is encrypted and thus they can enter sensitive information in the subject.

It is not unusual for account numbers, invoice numbers, etc., to be found in the

subject line of an email. Some email messages consist of only a subject line with no

text in the body.

There is value to leaving the subject line as plaintext, especially since EASE-

mail messages can be sent to recipients with whom the sender has never had contact.

Even though plaintext instructions in the body of a message can help a recipient

figure out how to decrypt the message, they may not motivate the user to actually

follow the steps. With the pervasiveness of spam, many users unfamiliar with EASE-

mail and encrypted email may regard legitimate secure messages as junk. Conversely,

a plaintext subject line with special meaning to the recipient may provide the mo-

tivation needed to decrypt the message. From our first motivating scenario, if Tim

encrypts a message and in the subject line states the job to which he is applying, HR

manager Bob will be more likely to take the time to decrypt the message.

For these reasons the subject line remains in plaintext and only the message

body and attachments are encrypted. The same decision was made for both PGP

and S/MIME to not encrypt the subject lines of encrypted email.

3.5 Spam

EASEmail lends itself very naturally to eliminating unsolicited email messages, com-

monly referred to as spam. A common practice among senders of spam (spammers)

is to forge the message sender’s address to make the message appear to come from

a source known to, or trusted by, the recipient. Since EASEmail requires the sender

to prove ownership of an email address before an encryption key can be obtained,

25

www.manaraa.com

spammers will only be able to send messages from accounts they actually control. If

a spammer attempts to forge the sender address the authentication of the ciphertext

MAC will fail and the message will be discarded. Even in situations where spam-

mers do control a valid email account, the overhead involved in encrypting millions

of messages will be too costly for them.

Alternatively, an email provider can use EASEmail to authenticate senders

and easily filter out spam messages that contain forged sender addresses. In addition

to authenticating the ciphertext and plaintext for the intended recipients as discussed

previously, senders can also authenticate just the ciphertext for the recipient’s email

provider. In the same way a key is generated for a recipient of a message, another key

can be obtained for the email provider itself. This enables email providers to authen-

ticate messages before they are delivered to the recipient, without the email provider

learning the content of the message (e.g., for Gmail, the ciphertext is authenticated

for a well known identifier such as gmail@gmail.com, Gmail then retrieves the key

and checks the MAC before delivering the message to the recipient’s inbox).

For maximum benefit, these approaches require that all messages are EASE-

mail messages. In these cases EASEmail can be very effective in eliminating unso-

licited messages.

26

www.manaraa.com

Chapter 4

Implementation

A number of goals were considered important during the design and develop-

ment of EASEmail. First, the email clients need to be easy to use. Instead of creating

an entirely new email client for users to learn, existing email clients were extended in

order to leverage the user’s previous experience. A key aspect of this goal is to make

sure the changes to the host program introduced by an extension are consistent with

the existing interface and experience.

Since it is not practical to produce an extension for every email program, a

zero footprint Java applet is also available. The applet is used in conjunction with

the user’s regular email program and performs encryption and decryption operations.

This allows user’s to simply copy and paste data into a normal email message and

send it using their regular email program.

Second, it is essential to maintain client interoperability. While this goal may

seem obvious, the Java applet presents constraints that need to be considered. The

Java applet is not integrated with an email client, prohibiting the complete automa-

tion of the secure message transmission process (the actual encryption and decryption

operations are still automated). In particular, usability will be adversely affected if

users are required to format messages a particular way, ensure adherence to naming

conventions on files, or other such details.

A valid EASEmail message is simply a normal email message with an attach-

ment. This attachment contains the entire encrypted message, including encrypted

27

www.manaraa.com

attachments. This ensures that sending and receiving encrypted messages is easy

even with the Java applet. Users only need to download the EASEmail attachment

and hand it off to the Java applet. All other aspects of the message do not affect the

validity of a secure message.

Finally, users may accidentally insecurely send messages that are intended to

be secure. Efforts to warn of or prevent such actions would likely be ignored or become

annoying. Instead the problem must be solved through an intuitive user interface that

effectively communicates the status of the message during composition.

The EASEmail implementation consists of five components: a KDC, a Java

library, a Java applet, an extension for the Mozilla Thunderbird email client, and an

extension for the Mozilla Firefox web browser for use with Gmail. Figure 4.1 shows

how these components interact.

Figure 4.1: EASEmail components and how they interact

4.1 KDC

The KDC is a Java servlet that runs on a Tomcat web server. It responds to client

key requests and serves web pages to browsers. Browsers and EASEmail clients use

28

www.manaraa.com

the same URL to access the KDC, which automatically differentiates between normal

web browser traffic and key requests.

For browser traffic, users are directed to a website that allows them to learn

about EASEmail and download the available client software. Users are also able to

access the Java applet by authenticating with their email address using SAW.

EASEmail clients communicate with the KDC in XML. The Java applet re-

ceives plaintext key responses from the KDC over HTTPS (users have already been

authenticated when they access the Java applet). The Thunderbird and Firefox ex-

tensions receive encrypted key responses from the KDC over HTTPS that require a

one-round SAW authentication to decrypt.

The KDC master key κkdc is stored in a local keystore on the local disk. For

more secure deployments it can also be stored in tamper resistant cryptographic

hardware [11, 21].

4.2 Java Library

All three clients access a shared library for encrypting and decrypting messages. This

library leverages the Bouncy Castle S/MIME and CMS Java Crypto APIs [3] for mes-

sage encryption and decryption. The Java applet accesses the Java library directly,

whereas the Thunderbird and Firefox extensions do not. Since Thunderbird and Fire-

fox do not provide effective mechanisms to call Java code from JavaScript, remote

procedure calls are used instead. Firefox does have a technology called LiveConnect

that allows Java code to be called from JavaScript, but this approach proved prob-

lematic and LiveConnect is scheduled to be removed from future versions of FireFox.

In order to enable remote procedure calls into the library, a lightweight fron-

tend was built to allow the library to run as a local service. The service is started any

time a call into the library is needed. The service opens a port and communicates

with the client using XML over HTTP.

29

www.manaraa.com

4.3 Firefox Extension for Gmail

The Firefox browser extension is specifically designed to work with Gmail. It was

implemented using JavaScript and accesses the local service.

4.3.1 Challenges

The Firefox client presents some unique challenges. First, the plaintext of secure mes-

sages must not be viewable by the email provider. Second an effective mechanism that

works well in web environments must be used to help ensure users do not accidentally

send secure messages insecurely. Finally, the extension must integrate tightly with

the web interface, creating a seamless experience that preserves the existing interface

and leverages the user’s existing experience.

Avoid authoring on the page Web-mail interfaces are controlled by the email

provider, allowing providers and potentially man-in-the-middle attackers (for situa-

tions where HTTPS is not used) to access email plaintext even during composition.

The trust model is two fold: the web browser operates in the trusted local computer

environment while the web interface operates in the untrusted web environment.

Email providers access messages during composition in limited ways. Auto-

matically saved drafts of the plaintext are common, and can possibly exist beyond

the duration of message composition (e.g., a server backup). Additionally, some email

providers scan message text in order to serve targeted ads.

Since the web-mail interface is not trusted, composing and displaying secure

messages on the web page needs to be layered. This is accomplished by using an

overlay that is placed on top of the usual composition or reading areas. This way

messages are never entered on the web page itself but are instead authored or displayed

in the trusted browser (see Figures 4.2(a) and 4.2(b)). This provides a seamless

interface where the user composes and reads her messages in the same way she does

without the extension, yet the plaintext never leaves her local computer.

30

www.manaraa.com

(a) Authoring a secure message in Gmail

(b) Reading a secure message in Gmail

Figure 4.2: Gmail overlay interface

31

www.manaraa.com

When to decide to encrypt For the Thunderbird extension the user is able to

toggle security on and off at any time during message composition. However the use of

overlays complicates this approach. Insecure compositions do not use the overlay; the

regular Gmail composition interface is used instead. If the user composes her message

in the regular interface, then later decides she wants to secure it, the message may

have already been compromised. Instead the user is required to specify whether she

wishes to compose the message securely or insecurely before she begins composing

her message (see Figure 4.3) so that secure messages remain secure the entire time

they are being composed.

Figure 4.3: Secure or Insecure prompt

Consistent interface The extension integrates tightly with the regular Gmail in-

terface, providing a seamless and natural interface so the user experience remains

largely unchanged. As the user navigates web pages the extension automatically

detects when a Gmail composition or reading page is loaded. When these pages are

detected the extension automatically displays the appropriate prompts for composing

a message or opens the correct overlays for reading a message.

32

www.manaraa.com

4.4 Thunderbird Extension

The Mozilla Thunderbird extension was written in JavaScript and accesses the local

service. When a new message arrives in the inbox the message is scanned for attach-

ments. If an EASEmail attachment is found it is decrypted with the sender-recipient

key which is requested from the KDC if it is not already cached locally. When a user

views a message that arrived encrypted she is notified that the message is secure (see

Figure 4.4). EASEmail messages are stored decrypted on the user’s local computer,

but remain encrypted on the email server.

Figure 4.4: Reading a secure message in Thunderbird

33

www.manaraa.com

Authoring a secure message in Thunderbird is almost the same as authoring a

traditional message. The message composition window is modified to allow the user

to toggle whether or not to secure the message. To help minimize the chance users

will accidentally send messages insecurely a colored border serves as a visual cue to

indicate whether or not a message is secure. By default messages are not secure.

Users can toggle message security on or off at any time during message composition

(see Figures 4.5(a) and 4.5(b)).

4.5 Java Applet

The zero-footprint Java applet is intended for users who either cannot install one of

the extensions on the computer they are using or do not have an email application

for which an extension has been developed. The applet performs encryption and

decryption operations and requires a regular email client or web-mail interface for

message transmission. The user is required to transfer data to/from the applet man-

ually. EASEmail messages are contained entirely within one physical file in order to

simplify this process.

The Java applet is hosted by the KDC. To access the client, a user navigates

to the applet login page and authenticates using a traditional SAW authentication

by submitting her email address. The first half of the SAW token is returned as a

cookie in the user’s browser and the other half is sent to her email address. The user

can click the link included in the email response to complete the authentication or

download the SAW toolbar to automate the process.

The applet includes two tabs, one for authoring secure messages (see Figure

4.6(a)) and one for reading secure messages (see Figure 4.6(b)). To author a message

the user selects the create secure message tab and fills in the body of the message,

attaching files if desired. A list of message recipients is also required so they can be

used as identifiers during message encryption.

34

www.manaraa.com

(a) Secure message interface

(b) Insecure message interface

Figure 4.5: Thunderbird message composition

35

www.manaraa.com

Once a sender has authored a secure message she is presented with a dia-

log from which she can copy and paste the recipients’ addresses and the decryption

instructions (see Section 3.4) into her email client or web-mail interface (see Figure

4.7). This dialog also contains the location of the file containing the secure EASEmail

message generated by the applet so the user can easily attach it to an email message.

A recipient uses the decryption tab to read downloaded EASEmail attach-

ments. She does so by browsing to a local copy of the attachment. If the user is a

valid recipient of the message the sender-recipient key is automatically retrieved and

the plaintext of the message is displayed along with any attachments. The plaintext

message is stored in a local variable in the applet and is garbage collected when the

applet is closed unless the user manually copies and pastes it into another program.

36

www.manaraa.com

(a) Java applet secure message creation tab

(b) Java applet secure message decryption tab

Figure 4.6: Java applet interface
37

www.manaraa.com

Figure 4.7: Java applet secure message creation information screen

38

www.manaraa.com

Chapter 5

Threat Analysis

This section explores the security strengths and weaknesses of EASEmail. First

we present the threat model used for this analysis.

5.1 Threat Model

The following is a list of possible attacks and the capabilities of the adversaries that

may conduct these attacks.

5.1.1 Attacks

Six major attacks are possible with any email system: observation, traffic analysis,

impersonation, replay, message modification, and denial of service.

5.1.2 Attackers

Two different attack models are considered: passive attacks and active attacks. Pas-

sive attacks are represented by Eve. Eve is capable of performing either of the first

two attacks: observation or traffic analysis. Her goal is to observe email traffic and

extract data of interest such as social security numbers, credit card numbers, names,

addresses, etc. Eve is limited strictly to observing messages while in transit or as

they reside on the email provider’s server (in the case of an insider).

Mallory is an active attacker who is capable of all six attacks. She not only

wants to extract useful data from normal message transmissions but also wants to

mislead users in an effort to get them to divulge personal information that she can

39

www.manaraa.com

use for personal gain, either by leading them to a counterfeit website (e.g., phishing)

or taking control of their computer (e.g., malware or spyware). She is also capable of

initiating connections with open services such as the KDC or a user’s email provider.

5.2 Threats

5.2.1 Eavesdropping

Eve can eavesdrop on EASEmail messages as they flow from the sender to the recipi-

ent. The only information Eve can gather is the address of the sender, the recipient’s

address, and the KDC used. Eve cannot read the actual contents of the message. She

can also determine the timing and size of the messages. The use of the nonce with

each message prevents Eve from detecting instances when the same message is sent

multiple times. In these cases the messages will be roughly the same size, but will

look completely different.

5.2.2 Denial of Service

As with any email system, Mallory can intercept EASEmail messages and prevent

their delivery. There will be no indication to the recipient that a message was not re-

ceived. While the KDC could determine that the key needed to decrypt the message

was never retrieved (through logging), this capability is not presently in the sys-

tem. Instead the sender has to detect that the message was never delivered (perhaps

through a follow up email) and resend the original message manually.

5.2.3 Message modification

Mallory is capable of modifying EASEmail messages while in transit. She can remove

parts, add parts, or simply fiddle with bits. However, any change to the actual mes-

sage content would be detected by the recipient during the ciphertext authentication

check. Once this check fails, the recipient can inform the sender.

40

www.manaraa.com

A more effective modification attack would involve altering the decryption

instructions. Since these instructions are not included in the message authentication

they can be changed just as a regular email message can be. The main changes that

can be made are to either remove the instructions altogether (so the user does not

know what to do with the message) or modify them to point to a different KDC or

website.

Being directed to a malicious website should not be a problem for users familiar

with the system. The only information they are used to giving the KDC is their email

address (which Mallory already has). Since there is no account creation process to use

the system, there is no password to phish or other information to harvest. Users who

are new to the system should already be wary about the information they provide it.

So while the site could request personal information, users should be careful about

what they disclose.

5.2.4 Replay

Mallory can save EASEmail messages she observes and replay them at a later time.

As with observation, she will not know the contents of the message. A recipient

could potentially detect a replay attack by keeping track of the nonces used. When

a duplicate nonce is detected then the user would know the message was replayed.

This feature is not presently implemented in the clients.

5.2.5 Impersonation to other users

In addition to replaying messages, Mallory can also resend observed EASEmail mes-

sages with the sender address modified. This attack is thwarted by EASEmail since

the incorrect keys will be requested and the MAC checks will fail, causing the message

to be discarded.

41

www.manaraa.com

5.2.6 Impersonation to the KDC

The weak link is the use of SAW for authentication. AuthTokenuser is delivered

in the session with the KDC. Mallory can start a session with the KDC and obtain

AuthTokenuser for any pair of senders and recipients. AuthTokenemail is delivered via

the requester’s email address. It is not possible for Mallory to request a key for a pair

of email addresses then request that AuthTokenemail be sent to an arbitrary email

address. AuthTokenemail is always sent to the address specified in the request. Thus

the only ways to obtain AuthTokenemail are to either eavesdrop on the legitimate

user’s email traffic, or compromise their email credentials. Since email providers have

the ability to read users’ email messages, they can impersonate the user at the KDC

and receive both pieces of the key, allowing them to arbitrarily decrypt messages.

This is the envelope level security discussed previously. Given the right cir-

cumstances Mallory can still decrypt messages, but Eve will not be able to read any

messages. In high confidentiality situations a stronger authentication mechanism can

be used to solve this problem.

5.2.7 Surreptitious Forwarding

With asymmetric encryption, messages are typically authenticated then encrypted.

This method provides assurances that the sender authored the message, but does

not provide any guarantees as to who encrypted it (because everyone has access to

the sender’s public key), leaving the message vulnerable to surreptitious forwarding.

Message signing only needs to be done once and each recipient can verify the signature

using the sender’s public key. This signature proves that Alice sent the message and

that the plaintext has remained unchanged.

Authenticating a message symmetrically is a bit different from its asymmetric

counterpart. Typically a symmetric key is shared between two parties. When the

first party (Bob) receives a message he knows the other party (Alice) was the one

42

www.manaraa.com

who encrypted it because only he and Alice have the encryption key. In this scenario

surreptitious forwarding is not possible since the parties with access to the encryption

key are well known.

This is complicated when optimizations are added to deal with messages that

have many recipients. In these cases, messages are first encrypted with a unique

message key. This message key is then encrypted with each sender-recipient key. This

way actual message encryption is only done once. This creates a problem however

because now no one has any guarantees as to who encrypted the message, since more

than two parties possess the key. For example, if Bob receives a message from Alice,

and knows that Charlie is also a recipient, he can modify the message, re-encrypt it

(leaving the rest of the message intact) and send it to Charlie. Now Charlie has two

messages that are very different and both look like they are from Alice. In reality he

does not know who encrypted it.

Message authentication solves this problem. By including a MAC digest for

each recipient based on the sender-recipient key, Bob no longer has the ability to

resend modified versions of the message without being detected. The authentication

essentially restores the two party scenario that the multiple recipients optimization

removed.

5.2.8 Compromised Keys

As discussed previously it is possible for Mallory to impersonate a user and obtain

their keys. This section outlines the damage that Mallory can do with the compro-

mised keys. We start with the most damaging compromise, and end with the least

damaging.

Compromise of the KDC master key The worst case scenario is the compromise

of the KDC master key. Compromising the KDC master key should be hard, and can

43

www.manaraa.com

only be done by compromising the KDC itself. Never at any time is the master key,

or pieces of it, sent over the network.

Since it is used to derive all other keys, its compromise means Mallory has the

ability to decrypt any message ever encrypted with a key from the KDC. To prevent

such loss the key can reside in cryptographic hardware [11, 21], giving the key greater

tamper resistance. Another solution would be to involve several independent KDCs.

Each KDC could contribute to the final key, which would then be combined by the

client using a key combination algorithm (e.g., XOR). This has the added benefit

of Mallory needing to compromise several KDCs, but adds the overhead of having

to contact all the KDCs before a key can be obtained. While this operation can be

done in parallel, it requires all the KDCs to be available at all times. The complexity

of compromising the KDC master key needs to be balanced with the confidentiality

requirements of the users of the KDC.

Compromise of sender key If Mallory somehow obtains a sender key she can

derive any sender-recipient keys she desires. This means she can impersonate the

sender for the remainder of the time period associated with the key. Since keys

are sender-recipient specific a compromised sender key does not mean Mallory can

decrypt received messages. She is only able to send encrypted email; she has obtained

no information that helps her decrypt received messages, including responses to sent

messages.

Compromise of recipient key If Mallory obtains a sender-recipient key she has

only obtained the ability to decrypt messages from one sender to a particular recipient

for the remainder of the time period associated with the key. She can decrypt messages

for the sender/recipient pair associated with the key, and no others.

44

www.manaraa.com

Chapter 6

User Study

The user study consisted of students from the Computer Security class at BYU.

This group was determined to be particularly appropriate for a user study because

they had completed an assignment that required them to obtain, sign, and exchange

PGP keys, and an assignment that required them to send and receive a message

secured with S/MIME. With this experience with existing secure email solutions,

they seemed ideal for evaluating the usability of EASEmail.

For the study participants received an email introducing the study which also

included a survey to complete once they finished the tasks outlined in the email (see

Appendix B for the complete text of the email and survey). In the email, participants

were instructed to wait for an encrypted EASEmail message. Once the message was

received they were directed to the EASEmail website where they could download

and install one of the clients, or access the Java applet. Their task was to read the

encrypted message and author and send a secure response. Once they completed this

task (or at least attempted to) they were asked to fill out the survey and submit it

via email (see Appendix B for the unedited survey responses).

6.1 Results

A total of 15 users signed up to participate in the study and 12 submitted a completed

survey. Of the 12 that completed the survey, 9 or 75% successfully sent a secured

response email. All three who did not send a secure response reported problems with

45

www.manaraa.com

decryption. One of these users (U3) used an auto forwarding address to their regular

email account. EASEmail does not currently support this since the software requests

decryption keys based on the address of the account the message was received at

instead of where it was sent to. The other two were both Mac users. The clients were

tested on a Mac system running OS X, so it is a mystery as to why both Mac users

were unable to successfully use the extension.

6.1.1 Multiple Choice Results

Of those who were able to decrypt and encrypt successfully, 8 out of 9 (88.9%) agreed

that decrypting and encrypting messages was easy, and that the user interface was

effective in communicating when they were authoring or reading secure messages.

Of all the study participants, only 3 of 12 (25%) disagreed that decrypting

was easy, 2 of 12 (16.7%) disagreed that encrypting was easy, and 1 of 12 (8.33%)

disagreed that the user interface was clear.

6.1.2 Short Answer Results

A number of concerns were raised in the short answer portion of the surveys:

• Encryption and decryption operations in Thunderbird in Windows causes a

command window to open briefly, which startled the user. This was known

prior to the study.

• For the Thunderbird client, the size of the secure toggle button was too large,

taking up too much screen space. The user suggested moving the toggle button

to the toolbar instead.

• Several users mentioned security concerns with the use of SAW, and problems

with receiving SAW response emails (either taking too long, or not being cleaned

up properly).

46

www.manaraa.com

• A few users mentioned that some documentation would have been helpful. Some

brief installation instructions were made available for the Thunderbird client,

otherwise documentation was purposefully omitted because the goal was to

integrate so closely with the host client’s interface that a user familiar with it

would find the changes made by the extension intuitive.

• Some expressed concerns with the prompt in Gmail that forces the user to

decide whether or not to author a secure message for each message. Many users

view the sending of secure messages as an infrequent task and do not want the

extension to intrude on their normal work flow.

• The use of Java and a backend service seems to be the cause of some general

stability and ease of use issues.

6.1.3 Solutions

In response to the concerns raised in the user study, the following solutions can be

considered:

• The current placement of the secure toggle button was selected so it would be

obvious to users. While its placement was based on user evaluation, additional

evaluation can be used to achieve a more optimal placement.

• SAW can be replaced with an alternate authentication mechanism. A few pos-

sibilities include:

– Users can be required to establish an account with the KDC and supply

their credentials to their EASEmail client. The client can connect to the

KDC directly over HTTPS and receives a direct response.

– An alternate distributed authentication mechanism such as OpenID [17] or

sSRP [8] can be used so maintain the lightweight nature of the KDC. This

47

www.manaraa.com

still allows direct connections for fast key retrieval, but does not require

the user to establish an account with yet another password.

– SAW can be used once during client installation to establish a secret be-

tween the KDC and the client. This secret can be derived using κkdc, the

user’s identifier, and a salt value (so it can be changed if the secret is com-

promised). The client provides the secret for authentication each time it

needs to obtain a key. The KDC does not have to store the secret since it

can be derived at any time. This way the user does not have to create an

account and KDC interactions will be fast.

• An introductory tutorial can be developed to help users who are unfamiliar with

secure email understand how it works and the changes the extension makes to

their experience.

• The Gmail extension can take a similar approach as the Thunderbird extension,

allowing the user to toggle security on and off. This would require using the

overlay all the time, even for insecure messages, so users would not expose the

plaintext of their messages. For this situation the implementation of a rich text

editor would likely be desirable.

• Instead of using Java, the extension can rely on C/C++ code accessed using

XPCOM. This would increase the speed and deployability of the extension.

48

www.manaraa.com

Chapter 7

Conclusions and Future Work

Using 3SKE and SAW, we designed and implemented a simple yet effective

authenticated key exchange protocol. We built a lightweight KDC that does not

require user specific management or the storage of user specific long term secrets.

The server facilitates the establishment and exchange of secrets needed for users to

exchange secure email messages without communicating prior to the exchange.

We designed and implemented three different clients for use with the EASE-

mail system. The Thunderbird and Firefox clients integrated tightly with their host

applications, creating a seamless interface. Users were able to easily decrypt secure

messages and author secure responses without having to manage keys.

We designed and implemented a solution to compose and receive secure email

messages using a web interface in a way that prevents the email provider from being

able to view the plaintext. Never at any time is the plaintext of a secure message

available for the email provider to view. This was done in a way that integrates

tightly with the email provider’s existing interface so the changes are intuitive and

natural for the user.

We conducted a user study to evaluate the effectiveness of EASEmail. While

a few issues did surface during the study, users generally liked it and felt it was easy

to use. With additional development effort to refine the user interface and improve

the efficiency of the system we are confident that these issues will be resolved.

49

www.manaraa.com

A number of improvements to the EASEmail system have been identified.

Some of these possible improvements were outlined in Section 6.1.3. Additionally,

add-ons for popular email clients (e.g., Outlook) and online email providers (e.g.,

Yahoo and Hotmail) need to be developed to cater to a larger user base.

We plan to continue to develop and improve EASEmail into a solution anyone

can use. After improving the existing clients it is our intent to host a KDC for public

use and to make the clients available generally.

EASEmail has the potential to be a widely used secure email solution. The

underlying technology makes it easy to use and secure. It addresses the key estab-

lishment and exchange problem and allows users to simply focus on the content of

their messages instead of the security of them.

50

www.manaraa.com

Bibliography

[1] Ben Adida, Susan Hohenberger, and Ronald L. Rivest. Lightweight encryption

for email. In SRUTI’05: Proceedings of the Steps to Reducing Unwanted Traffic

on the Internet Workshop, July 2005.

[2] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil

Pairing. In CRYPTO ’01: Proceedings of the 21st Annual International Cryp-

tology Conference on Advances in Cryptology, August 2001.

[3] Bouncy Castle Crypto APIs. http://www.bouncycastle.org/java.html.

[4] Don Davis. Defective Sign & Encrypt in S/MIME, PKCS#7, MOSS, PEM, PGP,

and XML. In Proceedings of the General Track: 2002 USENIX Annual Technical

Conference, June 2001.

[5] freenigma. http://www.freenigma.com/.

[6] Simson L. Garfinkel. Enabling email confidentiality through the use of oppor-

tunistic encryption. In dg.o ’03: Proceedings of the 2003 Annual National Con-

ference on Digital Government Research, May 2003.

[7] Simson L. Garfinkel, David Margrave, Jeffrey I. Schiller, Erik Nordlander, and

Robert C. Miller. How to make secure email easier to use. In CHI ’05: Proceedings

of the SIGCHI conference on Human factors in computing systems, April 2005.

[8] Andrew Harding, Timothy W. van der Horst, and Kent E. Seamons. Wireless

authentication using remote passwords. In WiSec ’08: Proceedings of the first

ACM conference on Wireless network security, April 2008.

[9] Russell Housley. Cryptographic Message Syntax.

http://tools.ietf.org/html/rfc3852, July 2004.

[10] Hushmail. https://www.hushmail.com/.

[11] IBM PCI-X Cryptographic Coprocessor. http://www.ibm.com/security/cryptocards/pcixcc/

overview.shtml.

51

www.manaraa.com

[12] IEEE Std 1363-2000: IEEE Standard Specifications for Public-Key Cryptogra-

phy.

[13] IEEE Std 1363a-2004: IEEE Standard Specifications for Public-Key Cryptogra-

phy - Amendment 1.

[14] Himanshu Khurana and Jim Basney. On the Risks of IBE. In IWAP ’06: Pro-

ceedings of the International Workshop on Applied PKC, November 2006.

[15] Hugo Krawczyk. The order of encryption and authentication for protecting

communications (Or: how secure is SSL?). Cryptology ePrint Archive, Report

2001/045, 2001. http://eprint.iacr.org/.

[16] NIST. The Keyed-Hash Message Authentication Code (HMAC). FIPS Pub 198a.

[17] OpenID. http://openid.net/.

[18] OpenPGP. http://tools.ietf.org/wg/openpgp/.

[19] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings

of CRYPTO 84 on Advances in cryptology, August 1985.

[20] S/MIME. http://tools.ietf.org/wg/smime/.

[21] Sun Crypto Accelerator 6000 PCIe Card. http://www.sun.com/products/networking/sslaccel/

suncryptoaccel6000/index.xml.

[22] Timothy W. van der Horst and Kent E. Seamons. Simple Authentication for the

Web. In SecureComm ’07: Proceedings of the 3rd International Conference on

Security and Privacy in Communication Networks, September 2007.

52

www.manaraa.com

Appendix A

EASEmail Message Details

A.1 Encryption

1. Get sender key κs if not already cached:

(a) Request κs from KDC, obtain half directly from KDC

(b) Retrieve second half of κs from email

(c) Combine both halves to get final κs

2. Generate nonce η = RAND()

3. For each recipient derive κs,rx = HMACκs(idrx)

4. Sign plaintext for each recipient:

(a) Derive κp mac
s,rx

= HMACκs,rx
(ConstPlain, η)

(b) Compute macP = HMACκp mac
s,rx

(MP)

(c) Set macP as a header in the message

5. Insert fake plaintext signatures:

(a) Generate Rmax-Ract random numbers (same length as HMAC output)

(b) Set random numbers as fake plaintext signatures in the message

6. Generate κm = RAND()

7. Encrypt κm for each recipient:

(a) Derive κenc
s,rx

= HMACκs,rx
(ConstEncrypt, η)

(b) Derive κid
s,rx

= HMACκs,rx
(ConstID, η)

(c) Compute iddgst
rx

= HMACκid
s,rx

(idrx)

(d) Encrypt κm with κenc
s,rx

(Eκenc
s,rx

(κm))

(e) Set key identifier in message with encrypted κmassociated with iddgst
rx

53

www.manaraa.com

8. Insert fake key identifiers:

(a) Generate Rmax-Ract random numbers for keys (same length as κs)

(b) Generate Rmax-Ract random numbers for identifiers (same length as iddgst
rx

)

(c) Encrypt κm with each generated key

(d) Set the key identifiers in the message with each encrypted κmassociated

with the generated identifiers

9. Encrypt MP with κm

10. Sign ciphertext for each recipient:

(a) Derive κc mac
s,rx

= HMACκs,rx
(ConstCipher, η)

(b) Compute macC = HMACκc mac
s,rx

(ME)

(c) Set macC as a header in the message

11. Insert fake ciphertext signatures:

(a) Generate Rmax-Ract random numbers (same length as HMAC output)

(b) Set random numbers as fake ciphertext signatures in the message

12. Set ids, τ , and η as headers in the message

A.2 Decryption

1. Extract ids, τ , and η from message headers

2. Get sender-recipient key κs if not already cached:

(a) Request κs,rx from KDC, obtain half directly from KDC

(b) Retrieve second half of κs from email

(c) Combine both halves to get final κs

3. Derive κc mac
s,rx

= HMACκs,rx
(ConstCipher, η)

4. Compute macC = HMACκc mac
s,rx

(ME)

5. Verify macC matches one of the ciphertext signature headers in the message

6. Derive κid
s,rx

= HMACκs,rx
(ConstID, η)

7. Compute iddgst
rx

= HMACκid
s,rx

(idrx)

8. Derive κenc
s,rx

= HMACκs,rx
(ConstEncrypt, η)

54

www.manaraa.com

9. Find the key identifier using iddgst
rx

and decrypt the encrypted key with κenc
s,rx

to

get κm

10. Decrypt ME with κm

11. Derive κp mac
s,rx

= HMACκs,rx
(ConstPlain, η)

12. Compute macP = HMACκp mac
s,rx

(MP)

13. Verify macP matches one of the ciphertext signature headers in the message

55

www.manaraa.com

56

www.manaraa.com

Appendix B

User Study Details

B.1 Introduction email

Secure Email (Part 3)

Overview In previous assignments you have been exposed to both S/MIME

and PGP. Now you will have the opportunity to try out a new secure email solution.

Part 3: EASEmail You will participate in a brief user study of Easy Secure

Accessible Email (EASEmail). To do this you will need the Java 5 JRE or higher

installed on your system. You will be required to use one of three different clients (2 of

which require installation on your system) to complete this assignment. If you already

have a Gmail account, and you use Firefox, it is preferable for you to download and

install the Firefox extension for Gmail. More details on this will be provided during

the assignment.

What to do:

1. Wait to receive an encrypted EASEmail message. Follow the plaintext instruc-

tions included with the secure email to decrypt it

2. Send an encrypted response answering the question in the secure email (the

answer isn’t as important as the encrypted response)

3. Send a plaintext email to rsegeb@cs.byu.edu answering the survey questions

below. Please include CS465 in the subject. You must complete this step to

receive credit

Notes:

• You will need a password when accessing the EASEmail website. The username

is easemail, the password is password. The password exists for intellectual prop-

erty protection purposes only and would not be present in a deployed system.

Please ignore its presence in your evaluation.

• You MUST have Java 5 or higher installed on your system

57

www.manaraa.com

• Attachments are not supported in the Firefox extension for Gmail

• The Thunderbird extension does not support IMAP

B.2 Survey

Please answer the following questions. Carefully consider your answers, don’t just fly

through them.

System information:

1. Which operating system did you use? Include as much detail as possible (e.g.,

Windows XP SP3, Ubuntu Linux 8.10, etc)

2. Which browser did you use (include version)? (e.g., I.E. 7, Firefox 3.0.3, etc)

3. Which EASEmail client did you use? (e.g., Thunderbird, Firefox, Java applet)

4. Which version of the Java JRE do you have?

5. Which email provider did you use?

6. How do you usually access your email? (e.g., web-based, client, etc) If you use

a client, which one(s)?

Experience feedback: Respond to each of the following with one of 5 answers:

A. Strongly Disagree B. Disagree C. Neither agree or disagree D. Agree E. Strongly

Agree

7. The decryption instructions included with the initial secure email were clear.

8. Downloading and installing the client (or accessing the online client) was easy.

9. Decrypting the email was easy to do.

10. Authoring a secure email was easy to do.

11. The user interface gave me clear feedback so I knew when I was reading or

authoring a secure message, and when I wasn’t.

Short answer questions:

12. If you used the Firefox extension for Gmail, how long have you been a Gmail

user?

13. How much time (minus answering these questions and waiting for the initial

secure email) did you spend on this assignment?

58

www.manaraa.com

14. Describe your overall experience, what went well, what didn’t? Did you run

into any problems or bugs? Please be specific.

15. What are your initial impressions of the system?

16. Would you use this system as a practical secure email solution? Why or why

not?

17. What parts, if any, of the system or user interface were confusing?

18. How might this system be improved?

Thank you

B.3 Responses

This section contains the unedited responses of the user study participants. They are

organized by user for each question, so U2 in question 1 is the same user as U2 in

question 2, etc.

Question 1 (OS)

U1 Windows XP Service Pack 3

U2 Windows XP sp3

U3 Ubuntu 8.04

U4 Windows Vista

U5 Windows XP SP3 - A computer in the CAEDM Computer Lab

U6 I used windows XP. I tried on Linux and had problems running the applet. I

am not sure why.

U7 Windows Vista sp1

U8 Mac OS X 10.5.5

U9 Windows XP SP3

U10 Windows Vista 64 Business

U11 XP-sp3

U12 OS X 10.5.5

59

www.manaraa.com

Question 2 (Browser)

U1 I used Firefox 3.0.4 to download the Easemail Thunderbird extension.

U2 Firefox 3.0.4

U3 Gecko/2008111317 Ubuntu/8.04 (hardy) Firefox/3.0.4

U4 Firefox

U5 Firefox 3.0.1

U6 Fire Fox, the version in the cs windows labs.

U7 firefox 3.04 (updated today)

U8 Firefox 3.0.4

U9 Firefox 3.0.4

U10 Firefox 3.04

U11 Firefox 3.0.4

U12 Firefox 3.0.4

Question 3 (client used)

U1 The Thunderbird extension

U2 Firefox

U3 Firefox

U4 Firefox

U5 Firefox with Gmail

U6 Fire fox plugin

U7 Firefox plugin

U8 Firefox

U9 Firefox

U10 Thunderbird

U11 Firefox

U12 Firefox

60

www.manaraa.com

Question 4 (Java version)

U1 I’m running the Java SE Runtime Environment build 1.6.0 10-b33. That’d

make it Java 6 or something... I don’t pay much attention to Java, so I’m not

exactly sure how they’re doing it nowadays.

U2 Java 1.6.0 10-rc

U3 Java 1.6.0 06

U4 1.6.0 07

U5 Java Version 6 Update 5

U6 6, I think.

U7 1.6.011 beta 3 (updated recently for javaFX)

U8 I’m not sure, and not sure how to find out

U9 JRE 6.10

U10 1.6 10

U11 Java 5

U12 1.6.0 07

Question 5 (email provider)

U1 I use my personal web server’s POP server.

U2 byu’s premium email

U3 Gmail

U4 gmail

U5 Gmail

U6 gmail

U7 gmail

U8 gmail

U9 GMail

U10 gmail

U11 gmail

U12 Gmail

61

www.manaraa.com

Question 6 (how email accessed)

U1 I usually use Thunderbird for all of my e-mail

U2 client, outlook

U3 Web Based

U4 web based

U5 Web-based

U6 umm, I go to gmail.com. I am not sure which category that is in.

U7 web-based

U8 web-based

U9 Evolution usually. (I tried doing the web based GMail in Linux but I didn’t

have the Java JRE working properly.)

U10 1st web-based then Thunderbird.

U11 web-based(firefox)

U12 Web-based client. Sometimes I also use Apple Mail.

Question 7 (clear instructions)

U1 Strongly Agree

U2 B (You need to re-word your instructions explaining everything)

U3 A - I couldn’t get it decrypted.

U4 disagree

U5 D

U6 D

U7 E

U8 D

U9 E

U10 B

U11 E

U12 E

62

www.manaraa.com

Question 8 (installing client is easy)

U1 Neither agree nor disagree.

U2 C I personally found it a pain to have to wait for email and then connect, but

if the client handles that for me I guess it wouldn’t be as much as an issue.

U3 D

U4 agree (i wish i didn’t have to restart firefox...)

U5 E

U6 D

U7 E

U8 E

U9 E

U10 E

U11 E

U12 D

Question 9 (decryption is easy)

U1 Strongly Agree.

U2 B Yes, once I realized I had to stick in the email It was sent to and not my

gmail account. I’m not sure why gmail was mentioned so many times especially

after the fact that we had given our emails to you guys.

U3 A

U4 agree

U5 E

U6 E

U7 E

U8 A (it didn’t work)

U9 E

U10 D

U11 E

U12 N/A [counted as neutral]

63

www.manaraa.com

Question 10 (encryption is easy)

U1 Strongly agree

U2 E

U3 A

U4 disagree. easemail timed out on me as it was negotiating keys or something. i

had to try to send the message twice.

U5 E

U6 E

U7 E - switching tabs re-initiated the the process, except it didn’t recognize that

there was now a draft: which had to be deleted before it would let me ”reply”

U8 C (never got a chance to do it)

U9 E

U10 E

U11 E

U12 N/A [counted as neutral]

Question 11 (clear UI)

U1 Strongly agree, but I think the indicator takes up too much space (especially

because of the colored background wrapped around the text area). A toolbar

button indicator would serve better, I think.

U2 E

U3 A

U4 neutral. i’m getting tons of spam in my mail. how do i get rid of this easemail

now?????

U5 E

U6 E

U7 D/E Yes, but wasn’t clear if replying or not

U8 C

U9 D

U10 D

64

www.manaraa.com

U11 D

U12 N/A [counted as neutral]

Questions 7-11 Summary

Strongly Disagree Neutral Agree Strongly

Disagree Agree

7 1 3 0 3 5

8 0 0 2 4 6

9 2 1 1 2 6

10 1 1 2 0 8

11 1 0 3 3 5

Question 12 (Gmail experience)

U1 blank

U2 N/A

U3 I have used gmail for 2+ years.

U4 quite awhile... 4 - 5 years

U5 I’ve been a Gmail user since August of 2004 (4 years).

U6 2 years

U7 3 years

U8 3 years

U9 2 years

U10 5+ years

U11 one year.

U12 4 years

Question 13 (time spent)

U1 Two or three minutes is all.

U2 15 minutes.

U3 30+ minutes

U4 20 minutes.

65

www.manaraa.com

U5 It took about 10 minutes. Most of that time was opening a different version of

Firefox because the default version on the lab machine was 2.0.0.16.

U6 15 mins

U7 10-15 minutes

U8 20 minutes

U9 10 minutes

U10 approx 1 hr

U11 15 mins

U12 15 minutes

Question 14 (overall experience)

U1 The command window popups when I first started Thunderbird and when send-

ing an e-mail were startling and required me to unblock Java’s port in Windows’

firewall. If the popups could be eliminated and the port unblocked automati-

cally somehow, that would make it a lot nicer to use. When I sent the message

it made Thunderbird think I had received a new e-mail, so I’ve got a phantom

’new e-mail’ icon in my task tray right now.

U2 I already mentioned my beefs above. After I realized how the system worked

it went smoothly. I would suggest a flash tutorial or something for future new

users.

U3 Installing everything was fine. Then the plug-in would pop up every few seconds

and not really do anything other than say it was checking for an EASEMail

message. Even when I opened your encrypted email message it checked....but

didn’t do anything. The part that I think is the worst is that there are no

instructions that I could find anywhere that say what I might want to try next.

U4 not too well. i dno’t know how to get rid of easemail when i’m done with it. i

get lots of spam in my mailbox that i don’t want from easemail and it didnt’

encrypt my message right on the first try – it timed out.

U5 The overall experience was pretty smooth. The only two issues I encountered

were cosmetic: the security overlay was a little off-center and if I scrolled up to

the original message when I was replying the overlay would shrink to a small

rectangle that would remain on the bottom of the screen even though I was

scrolled completely past it.

66

www.manaraa.com

U6 I was very confused by the website. It took me a while to realize that I had

been given a password, so I didn’t know how to log in.

U7 Was good up until the point where I swiched tabs... Upon return the process

started over. Going into the drafts didn’t work either... had to delete the draft

to start over.

U8 It was taking forever do decrypt. I tried several times, and had to restart firefox

completely. It was very frustrating, especially after the speed and ease of the

other steps

U9 I had Java issues in Linux...kind of out of your control. I don’t know how to

encrypt a message that is not a reply.

U10 The first time I did the lab, the secure email site crashed - the Java servlet

loaded, but did not display. When refreshed the URL, I saw the Tomcat admin

webpage. I tried it again that evening and was successful. I downloaded and

installed the Firefox AND Thunderbird plugins, but they both did not work.

The message was not ”automatically” taken care of as the e-mail stated.

U11 Good experience. Gmail experience was no different than before.

U12 Neither encryption nor decryption completed successfully; the progress bar

got stuck halfway through decryption, and the request for an encryption

key timed out. I looked in the Console, and found the following error:

12/11/08 8:50:05 PM [0x0-0xcd0cd0].org.mozilla.firefox Unable to access jarfile

/Users/bjhomer/Library/Application. It looks like the Firefox plugin is looking

for a jar and has a wrong path.

Question 15 (initial impressions)

U1 I don’t feel one way or the other about it at this point.

U2 I don’t like the idea of needing multiple emails to get one email, but it seems

secure. It does worry me that if someone were to get into my email they

would have access to all of my encrypted emails since the system sends an

authentication token to your email. If the site requires some sort of password I

guess it might be more secure, granted if someone has access to my email, they

might already have access to my password.

U3 I think it needs to go through a few more iterations.

U4 if you guys get the bugs worked out, it could work better...

67

www.manaraa.com

U5 The system definitely makes secure email significantly easier to send and receive.

The Gmail interface is still a little rough around the edges but works well (which

is the most important part).

U6 I liked it a lot.

U7 I liked it

U8 I think it’s a good idea. Although, I would like to see an option made that

would allow me to disable the prompt for a secure/insecure email. (I know

what it looks like because I went to the demo. Lucky thing too, or I’d have no

idea what this thing was supposed to do).

U9 Encrypted and decrypting was easy. It does all the complicated ’key exchanges’

automatically. no need to exchange keys or certificates

U10 A bit raw since I had to do all manually without the assistance of the plugin.

U11 I think it is great. This way I can actually start sending encrypted email, since

the current technologies are a pain in the butt to send encrypted mail.

U12 My impression from using the system on my own computer is that it could be

cool, but needs some more debugging. I also saw your presentation at the CS

Demo Day, though, and I think that if I could install it, it would be very easy

to use.

Question 16 (use again?)

U1 Personally, I might use it after the quirks have been worked out of the Thun-

derbird extension and after I’ve learned what it’s doing behind the scenes (to

satisfy myself that it is, in fact, secure). I would also want to be assured that it

wouldn’t interact poorly with my other secure e-mail methods (certificates and

PGP).

U2 Doubtful, unless it was integrated into outlook and didn’t use java. Java has

the ugliest user interfaces. In all honesty if you don’t make a nice integration

into outlook you are kind of acting like the business aspect of the world isn’t

important, but be careful that’s where real power lies in trying to set new

precedents.

U3 No. Because it doesn’t work.

U4 yeah, if you guys get the bugs worked out and it doesn’t spam me all the time.

right now, i just want to take it off.

68

www.manaraa.com

U5 I think I would use it. My only hesitation would be putting the security of my

messages in a third-party’s hands (since, if I understand correctly, the encryp-

tion keys are stored on the EASEmail server).

U6 It is easy to use, but I don’t know how secure it is.

U7 If the interface looked better and had a menu bar with options (reply, reload,

discard, etc...)

U8 Yeah, sure. If I didn’t have to choose secure/insecure every single time I wanted

to send an email. I would definitely miss the draft and search features. I use

those a lot, and that would deter me from using secure email unless I absolutely

had to. Which is unlikely.

U9 It’s pretty good. Kind of a weird setup because it relies on a Firefox plugin and

then Java. I had to update my Java (I’m not sure if I needed to or if the plugin

installer thing just wasn’t working right the first time).

U10 If the plugins worked, yes.

U11 Definitely. See previous answer.

U12 I find the searchability of Gmail’s web interface to be highly useful, so I probably

wouldn’t use it for casual use. If I were using an offline client or had trade

secrets, I’d be likely to use something like this.

Question 17 (UI confusing?)

U1 I don’t think anything was particularly confusing, though the command window

popups surprised me.

U2 N/A

U3 The fact that I didn’t ever see a user interface.

U4 finding the initial firefox link was confusing. i didn’t know that I had to down-

load something for firefox. i thought there was going to be a java applet that

would run on a web page and i just work through taht applet. i wasn’t looking

for a download, but all the links i was seeing were download links. make it more

clear that you’re giong to download somethign for all of the options and make

it clear where those downloads are.

U5 I didn’t find anything to be particularly confusing. The Firefox / Gmail plug-in

installed without any probably and functioned pretty seamlessly.

U6 Everything was clear, except the website login

69

www.manaraa.com

U7 Not confusing, just lacking / not very appealing

U8 I think it’s fine. (again, saw the demo. you guys made it look easy

U9 I don’t see how to encrypt a composed message.

U10 The dialog that appears after you create the return secure e-mail suggests that

the secure e-mail was sent. I wasn’t sure so I responded to the original email

with the encrypted file with my encrypted response.

U11 Nothing. They were are clear, visible, and user friendly.

U12 I found the user interface to be quite good.

Question 18 (impovements?)

U1 I think I’ve mentioned the two ways I would improve the system - make the

command window popups go away, and move the secure/insecure indicator take

up a *lot* less space (preferably moving it to the toolbar of the message com-

position window).

U2 Outlook add in

U3 Sorry I have been so harsh. I feel that I am a pretty confident computer user

and this addon just flat out didn’t work.

U4 see above.

U5 From my brief experiences with the system, the only thing that could use im-

provement is the fit and finish of the Gmail integration (I didn’t try Thunder-

bird). It’s usable as is but between little delays when the overlay is placed on

top of the compose window and slight offsets it doesn’t feel polished yet. Again,

it doesn’t really hurt usability but could cause frustration to users.

U6 Maybe have some flashing boxes on the website, it would be cool.

U7 Worked well outside of small bugs mentioned

U8 Speed up the time it takes to check for encrypted mail and try to decrypt it.

U9 A imple manual

U10 a) The plugins should work as advertised. b) Always tell the user what will

happen next if they follow the directions so that they know if they did something

wrong.

U11 Maybe instead of placing the secure compose box on top of the gmail page, have

gmail adopt it as a standard in their actual page.

U12 Just fix the bugs, I think.

70

www.manaraa.com

Replied securely

U1 Yes

U2 Yes

U3 No

U4 Yes

U5 Yes

U6 Yes

U7 Yes

U8 No

U9 Yes

U10 Yes

U11 Yes

U12 No

71

	EASEmail: Easy Accessible Secure Email
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Contents
	1 Introduction
	1.1 Motivating Scenarios

	2 Related Work
	2.1 Pretty Good Privacy
	2.2 Secure/Multipurpose Internet Mail Extensions
	2.3 Identity Based Encryption
	2.4 Lightweight Encryption for Email
	2.5 Identity Based Message Key Distribution
	2.6 Opportunistic Encryption
	2.7 Web-based Providers
	2.7.1 Hushmail
	2.7.2 freenigma

	3 EASEmail
	3.1 Design Goals
	3.1.1 Usability
	3.1.2 Mobility
	3.1.3 Security

	3.2 EASEmail Overview
	3.2.1 Encryption
	3.2.2 Decryption

	3.3 Key Establishment and Exchange
	3.3.1 Source-Specific Symmetric Key Exchange
	3.3.2 Simple Authentication for the Web
	3.3.3 Combining 3SKE and SAW for use with EASEmail

	3.4 Sending an EASEmail Message
	3.4.1 Message Encryption
	3.4.2 Message Authentication
	3.4.3 Subject Line Encryption

	3.5 Spam

	4 Implementation
	4.1 KDC
	4.2 Java Library
	4.3 Firefox Extension for Gmail
	4.3.1 Challenges

	4.4 Thunderbird Extension
	4.5 Java Applet

	5 Threat Analysis
	5.1 Threat Model
	5.1.1 Attacks
	5.1.2 Attackers

	5.2 Threats
	5.2.1 Eavesdropping
	5.2.2 Denial of Service
	5.2.3 Message modification
	5.2.4 Replay
	5.2.5 Impersonation to other users
	5.2.6 Impersonation to the KDC
	5.2.7 Surreptitious Forwarding
	5.2.8 Compromised Keys

	6 User Study
	6.1 Results
	6.1.1 Multiple Choice Results
	6.1.2 Short Answer Results
	6.1.3 Solutions

	7 Conclusions and Future Work
	Bibliography
	A EASEmail Message Details
	A.1 Encryption
	A.2 Decryption

	B User Study Details
	B.1 Introduction email
	B.2 Survey
	B.3 Responses

